Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Sans Foi Ni Loi des Alizés de Maelynn's Profile #### Pet information Registered nameSexSans Foi Ni Loi des Alizés de MaelynnF Owner reported breedDate of birthWhippet2023-04-28 **Microchip number** 250269610076431 #### **Genetic Diversity** Sans Foi Ni Loi des Alizés de Ma...'s Percentage of Heterozygosity 31% #### Health summary At Risk 0 conditions Carrier 0 conditions Clear 272 conditions Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Genetic Diversity #### Heterozygosity # Sans Foi Ni Loi des Alizés de Ma...'s Percentage of Heterozygosity 31% Sans Foi Ni Loi des Alizés de Maelynn's genome analysis shows an average level of genetic heterozygosity when compared with other Whippets. #### **Typical Range for Whippets** 27% - 36% Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ #### Health conditions known in the breed | Collie Eye Anomaly (CEA) | Gene | Risk Variant | Copies | Inheritance | Result | |--------------------------|-------|--------------|--------|-------------|--------| | | NHEJ1 | Deletion | 0 | AR | Clear | #### Information about the genetic condition Collie Eye Anomaly is primarily characterized by choroidal hypoplasia, leading to an underdeveloped vascular supply to the retina, and is especially visible temporal to the optic nerve. CEA lesions may be present in both eyes or asymmetric in nature. CEA-associated choroidal hypoplasia is non-progressive and usually does not cause visual deficits on its own. However, CEA has a range of clinical expressions. Vision impairment is more likely in dogs with the "extended CEA phenotype," which may include optic nerve head colobomas, retinal detachment or intraocular hemorrhage secondary to coloboma(s) in severely affected dogs. Optic nerve head colobomas appear as excavations of the optic disc surface. Diagnosis of CEA lesions should be completed before 10 weeks of age, as retinal pigmentation can mask choroidal hypoplasia as the puppies grow, a phenomenon termed "go normal" by breeders. Research is ongoing to determine what additional genetic factors may be present that influence the range of severity seen in dogs with CEA. #### Breeder recommendation This disorder is autosomal recessive, meaning two copies of the variant are needed for a dog to be at an elevated risk for being diagnosed with the condition. A carrier dog with one copy of the Collie Eye Anomaly variant can be safely bred with a clear dog with no copies of the Collie Eye Anomaly variant. About half of the puppies will have one copy (carriers) and half will have no copies of the variant. Furthermore, a dog with two copies of the CEA variant can be safely bred with a clear dog. The resulting puppies will all be carriers. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: Recent research has suggested that additional genetic risk factors likely exist in some breeds that resemble or contribute to CEA risk, especially the more severe disorder expression. It is possible that disorder signs similar to the ones associated with this CEA variant could develop due to a different genetic or clinical cause. | Muscular Hypertrophy (Double Muscling) | Gene | Risk Variant | Copies | Inheritance | Result | |--|------|--------------|--------|-------------|--------| | | MSTN | T>A | 0 | AR | Clear | #### Information about the genetic condition Dogs that are homozygous for the mutation are highly over-muscled. Heavily muscled Whippets, also called "Bully Whippets", have broad chests and unusually well-developed leg and neck musculature. Bully Whippets can easily be distinguished from their normal littermates based on physical appearance. Double muscled Whippets don't seem to have any health problems other than occasional muscle cramping. #### Breeder recommendation Breeding for the double muscle appearance is not advised as dogs that are over-muscled may have impaired movement. A carrier dog with one copy of the Muscular Hypertrophy mutation can be safely bred with a clear dog with no copies of the Muscular Hypertrophy mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the Muscular Hypertrophy mutation. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not recommended for this condition as the resulting litter may contain dogs with the double muscle phenotype. Please note: It is possible that signs similar to the ones caused by the Muscular Hypertrophy mutation could develop due to a different genetic or clinical cause. Wisdom Panel™ Genetics Report page 3 of 25 Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ### Health conditions known in the breed | Phosphofructokinase Deficiency | Gene | Risk Variant | Copies | Inheritance | Result | |--------------------------------|------|--------------|--------|-------------|--------| | | PFKM | G>A | 0 | AR | Clear | #### Information about the genetic condition Dogs suffering from PFK deficiency display hemolytic anemia (breakdown of red blood cells) especially with alkaline blood. Barking or panting, rigorous exercising, or high environmental temperature may trigger the clinical signs by increasing the body's pH value. This may lead to a hemolytic crisis causing anemia, fatigue, and fever. Affected dogs can also show pigmenturia and jaundice after an episode. Other milder clinical signs include muscle weakness and reduced exercise tolerance. Cardiac problems have also been observed in Whippets. #### Breeder recommendation This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to occur. A carrier dog with one copy of the PFK mutation can be safely bred with a clear dog with no copies of the PFK mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the PFK mutation. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: It is possible that disease signs similar to the ones caused by the PFK mutation could develop due to a different genetic or clinical cause. Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ### **Traits** #### **Coat Color** | | Gene | Variant | Copies | Result | |--|--------|----------------|--------|---------------------------| | Fawn Copies of this variant will cause dogs to show fawn if they do not have other variant that will mask this effect, such as a plain red, black or white coat. | ASIP | ау | 2 | Fawn possible | | Recessive Black | ASIP | а | 0 | No effect | | Tan Points | ASIP | a ^t | 0 | No effect | | Dominant Black One or two copies of the dominant black will give a dog a black coat (depending on other variants), black eye rims, nose and pads. One copy may also give a tiger striped appearance, known as brindle patterning. | CBD103 | Кв | 1 | Black or brindle possible | | Mask One or two copies of the Mask mutation will result in the presence of a dark facial mask covering the muzzle. This mask can cover only the very front of the muzzle, or can extend down to the chest and front legs. Mask can be hidden by other trait variants. | MC1R | Em | 1 | Dark Muzzle possible | | Recessive Red (e1) To show a solid red coat, a dog must inherit two copies of a Recessive Red variant, one from each parent. This can either be two copies of a particular variant, such as this one (e1) or two of any combination of recessive red variants. Recessive red coats will appear white, cream, yellow or red, although there are other variants that can result in a similar appearance. The amount of red pigment in the coat, called the intensity, is governed by other genes. | MC1R | e ¹ | 1 | No effect | | Recessive Red (e2) | MC1R | e ² | 0 | No effect | | Recessive Red (e3) | MC1R | e ³ | О | No effect | | Sable (Discovered in the Cocker Spaniel) | MC1R | е ^Н | 0 | No effect | | Widow's Peak (Discovered in Ancient dogs) | MC1R | e ^A | 0 | No effect | | Widow's Peak (Discovered in the Afghan Hound and Saluki) | MC1R | EG | 0 | No effect | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ #### **Color Modification** | | Gene | Variant | Copies | Result | |--|--------|----------------|--------|---------------------------------------| | Cocoa (Discovered in the French Bulldog) | HPS3 | СО | 0 | No effect | | Red Intensity Dogs with two copies of the Red Intensity variant are more likely to show yellow, cream or white coat shades instead of deeper red shades. If the dog does not display solid red or red coat patterns, there will be no visible effect. Other genes, notably variants in the KITLG gene, are also thought to contribute to red pigment intensity variation, so some dogs may have yellow or buff colored coats. | MFSD12 | i | 2 | White to yellow coat
shades likely | | Dilution (d1) Linkage test To show coat color dilution, a dog must inherit two copies of a dilution variant, one from each parent. This can either be two copies of a particular variant, such as this one (d1) or two of any combination of dilution variants. This variant (d1) is the most common dilution variant in dogs. The test for d1 is a linkage test, that measures markers close to the d1 variant to determine the most likely d1 genotype. The test is 99.2% accurate based on a set of over 3000 breed and mixed breed dogs with a known d1 genotype. | MLPH | d¹ | 1 | No effect | | Dilution (d2) | MLPH | d ² | 0 | No effect | | Dilution (d3) | MLPH | d ³ | 0 | No effect | | Chocolate (basd) | TYRP1 | þasd | 0 | No effect | | Chocolate (bc) | TYRP1 | b∘ | 0 | No effect | | Chocolate (bd) | TYRP1 | b₫ | 0 | No effect | | Chocolate (be) | TYRP1 | þe | 0 | No effect | | Chocolate (bh) | TYRP1 | р _н | 0 | No effect | | Chocolate (bs) | TYRP1 | bs | 0 | No effect | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ #### **Coat Patterns** | | Gene | Variant | Copies | Result | |--|-------|---------|--------|---------------------------------------| | Piebald Dog with copies of the Piebald variant are likely to show white spotting, patches and/or a white coat, with two copies having a greater effect than one, although the strength of this effect may be influenced by other genes. | MITF | SP | 2 | Particolor or white markings possible | | Merle | PMEL | М | О | No effect | | Harlequin | PSMB7 | Н | 0 | No effect | | Saddle Tan One or two copies of the Saddle Tan variant are needed for the "saddle" to be seen. However the Tan Points variant must also be present. The Saddle Tan variant is actually considered to be the wild type, or default, variant. | RALY | - | 2 | Saddle possible | | Roan (Linkage test) | USH2A | Tr | 0 | No effect | ### **Coat Length and Curl** | | Gene | Variant | Copies | Result | |-----------------|-------|-----------------|--------|-----------| | Long Hair (lh1) | FGF5 | lh¹ | 0 | No effect | | Long Hair (lh2) | FGF5 | lh² | Ο | No effect | | Long Hair (Ih3) | FGF5 | lh³ | 0 | No effect | | Long Hair (lh4) | FGF5 | lh4 | 0 | No effect | | Long Hair (Ih5) | FGF5 | lh ⁵ | 0 | No effect | | Curly Coat | KRT71 | С | 0 | No effect | #### Hairlessness | | Gene | Variant | Copies | Result | |---|-------|-------------------|--------|-----------| | Hairlessness (Discovered in the Chinese Crested Dog) Linkage test | FOXI3 | Hrcc | 0 | No effect | | Hairlessness (Discovered in the American Hairless Terrier) | SGK3 | hr ^{aht} | 0 | No effect | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ #### Hairlessness | | Gene | Variant | Copies | Result | |---|------|---------|--------|-----------| | Hairlessness (Discovered in the Scottish Deerhound) | SKG3 | hrsd | 0 | No effect | ### **Shedding** | | Gene | Variant | Copies | Result | |---|------|---------|--------|-------------| | Reduced Shedding One or two copies of the Reduced Shedding variant is likely to reduce a dog's tendency to shed. Copies of the Furnishings variant, particularly two, also reduce the tendency of a dog to shed. | MC5R | sd | 2 | Low shedder | #### **More Coat Traits** | | Gene | Variant | Copies | Result | |-------------|------------------------------------|---------|--------|-----------| | Hair Ridge | FGF3,
FGF4,
FGF19,
ORAOV1 | R | 0 | No effect | | Furnishings | RSP02 | F | 0 | No effect | | Albino | SLC45A2 | Cal | 0 | No effect | ### **Head Shape** | | Gene | Variant | Copies | Result | |-----------------------------|-------|---------|--------|-----------| | Short Snout (BMP3 variant) | ВМР3 | - | 0 | No effect | | Short Snout (SMOC2 variant) | SMOC2 | - | 0 | No effect | ### **Eye Color** | | Gene | Variant | Copies | Result | |--|------|---------|--------|-----------| | Blue Eyes (Discovered in the Siberian Husky) | ALX4 | - | 0 | No effect | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ #### **Ears** | | Gene | Variant | Copies | Result | |-------------|-------|---------|--------|--------------------------| | Floppy Ears | MSRB3 | - | 0 | Pricked ears more likely | #### **Extra Toes** | | Gene | Variant | Copies | Result | |--|-------|---------|--------|-----------| | Hind Dewclaws (Discovered in Asian breeds) | LMBR1 | DC-1 | 0 | No effect | | Hind Dewclaws (Discovered in Western breeds) | LMBR1 | DC-2 | Ο | No effect | ### **More Body Features** | | Gene | Variant | Copies | Result | |-------------------------------------|-------|---------|--------|-------------------------| | Back Muscle and Bulk | ACSL4 | - | O | No effect | | High Altitude Adaptation | EPAS1 | - | O | No effect | | Short Legs (Chondrodysplasia, CDPA) | FGF4 | - | O | No effect | | Short Legs (Chondrodystrophy, CDDY) | FGF4 | - | Ο | No effect | | Short Tail | T-box | Т | 0 | Full tail length likely | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|--------------|--------------|--------|-------------|--------| | 2,8-dihydroxyadenine (DHA) Urolithiasis | APRT | G>A | 0 | AR | Clear | | Acral Mutilation Syndrome | GDNF | C>T | O | AR | Clear | | Acute Respiratory Distress Syndrome | ANLN | C>T | 0 | AR | Clear | | Alaskan Husky Encephalopathy | SLC19A3 | G>A | 0 | AR | Clear | | Alexander Disease | GFAP | G>A | 0 | AR | Clear | | Amelogenesis Imperfecta (Discovered in the Italian Greyhound) | ENAM | Deletion | 0 | AR | Clear | | Amelogenesis Imperfecta (Discovered in the Lancashire Heeler) | Confidential | - | 0 | AR | Clear | | Amelogenesis Imperfecta (Discovered in the Parson Russell Terrier) | ENAM | C>T | 0 | AR | Clear | | Bandera's Neonatal Ataxia | GRM1 | Insertion | 0 | AR | Clear | | Benign Familial Juvenile Epilepsy | LGI2 | A>T | 0 | AR | Clear | | Bernard-Soulier Syndrome (Discovered in the Cocker Spaniel) | GP9 | Deletion | 0 | AR | Clear | | Canine Congenital Stationary Night Blindness (Discovered in the Beagle) | LRIT3 | Deletion | 0 | AR | Clear | | Canine Leukocyte Adhesion Deficiency (CLAD), type III | FERMT3 | Insertion | 0 | AR | Clear | | Canine Multifocal Retinopathy 1 | BEST1 | C>T | 0 | AR | Clear | | Canine Multifocal Retinopathy 2 | BEST1 | G>A | 0 | AR | Clear | | Canine Multifocal Retinopathy 3 | BEST1 | Deletion | 0 | AR | Clear | | Canine Multiple Systems Degeneration (Discovered in the Chinese Crested Dog) | SERAC1 | Deletion | 0 | AR | Clear | | Canine Scott Syndrome | ANO6 | G>A | О | AR | Clear | | Cardiomyopathy and Juvenile Mortality (Discovered in the Belgian Shepherd) | YARS2 | G>A | 0 | AR | Clear | | Centronuclear Myopathy (Discovered in the Great Dane) | BIN1 | A>G | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|-------------------|--------------|--------|-------------|--------| | Centronuclear Myopathy (Discovered in the Labrador Retriever) | PTPLA | Insertion | 0 | AR | Clear | | Cerebellar Ataxia | RAB24 | A>C | 0 | AR | Clear | | Cerebellar Cortical Degeneration | SNX14 | C>T | 0 | AR | Clear | | Cerebellar Hypoplasia | VLDLR | Deletion | 0 | AR | Clear | | Cerebral Dysfunction | SLC6A3 | G>A | 0 | AR | Clear | | Chondrodysplasia (Discovered in Norwegian Elkhound and Karelian Bear Dog) | ITGA10 | C>T | 0 | AR | Clear | | Chondrodystrophy (CDDY) and Intervertebral Disc
Disease (IVDD) Risk | FGF4
retrogene | Insertion | 0 | AD | Clear | | Cleft Lip & Palate with Syndactyly | ADAMTS20 | Deletion | 0 | AR | Clear | | Cleft Palate | DLX6 | C>A | 0 | AR | Clear | | CNS Atrophy with Cerebellar Ataxia (Discovered in the Belgian Shepherd) | SEPP1 | Deletion | 0 | AR | Clear | | Coat Color Dilution and Neurological Defects (Discovered in the Miniature Dachshund) | MYO5A | Insertion | 0 | AR | Clear | | Complement 3 Deficiency | C3 | Deletion | 0 | AR | Clear | | Cone Degeneration (Discovered in the Alaskan
Malamute) | CNGB3 | Deletion | 0 | AR | Clear | | Cone Degeneration (Discovered in the German Shepherd Dog) | CNGA3 | C>T | 0 | AR | Clear | | Cone Degeneration (Discovered in the German Shorthaired Pointer) | CNGB3 | G>A | 0 | AR | Clear | | Cone-Rod Dystrophy | NPHP4 | Deletion | 0 | AR | Clear | | Cone-Rod Dystrophy 1 | PDE6B | Deletion | 0 | AR | Clear | | Cone-Rod Dystrophy 2 | IQCB1 | Insertion | 0 | AR | Clear | | Congenital Cornification (Discovered in the Labrador Retriever) | NSDHL | Deletion | 0 | XD | Clear | | | | | | | | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ### Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|---------|--------------|--------|-------------|--------| | Congenital Dyshormonogenic Hypothyroidism with Goiter (Discovered in the Shih Tzu) | SLC5A5 | G>A | 0 | AR | Clear | | Congenital Eye Malformations (Discovered in the Golden Retriever) | SIX6 | C>T | 0 | AD | Clear | | Congenital Hypothyroidism (Discovered in the Tenterfield Terrier) | TPO | C>T | 0 | AR | Clear | | Congenital Hypothyroidism (Discovered in the Toy Fox and Rat Terrier) | TPO | C>T | 0 | AR | Clear | | Congenital Muscular Dystrophy (Discovered in the Italian Greyhound) | LAMA2 | G>A | 0 | AR | Clear | | Congenital Muscular Dystrophy (Discovered in the Staffordshire Bull Terrier) | LAMA2 | Deletion | 0 | AR | Clear | | Congenital Myasthenic Syndrome (Discovered in the Golden Retriever) | COLQ | G>A | 0 | AR | Clear | | Congenital Myasthenic Syndrome (Discovered in the Heideterrier) | CHRNE | Insertion | 0 | AR | Clear | | Congenital Myasthenic Syndrome (Discovered in the Jack Russell Terrier) | CHRNE | Insertion | 0 | AR | Clear | | Congenital Myasthenic Syndrome (Discovered in the Labrador Retriever) | COLQ | T>C | 0 | AR | Clear | | Congenital Myasthenic Syndrome (Discovered in the Old Danish Pointer) | CHAT | G>A | 0 | AR | Clear | | Congenital Stationary Night Blindness (CSNB) | RPE65 | A>T | 0 | AR | Clear | | Craniomandibular Osteopathy (Discovered in Scottish Terrier breeds) | SLC37A2 | C>T | 0 | AD | Clear | | Craniomandibular Osteopathy (Discovered in the Australian Terrier) | COL1A1 | C>T | 0 | AD | Clear | | Craniomandibular Osteopathy (Discovered in the Basset Hound) | SLC37A2 | C>T | 0 | AD | Clear | | Craniomandibular Osteopathy (Discovered in the Weimaraner) | SLC35D1 | Deletion | 0 | AD | Clear | | Cystic Renal Dysplasia and Hepatic Fibrosis | INPP5E | G>A | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|------------|--------------|--------|-------------|--------| | Cystinuria Type I-A | SLC3A1 | C>T | 0 | AR | Clear | | Cystinuria Type II-A | SLC3A1 | Deletion | 0 | AD | Clear | | Darier Disease (Discovered in the Irish Terrier) | ATP2A2 | Insertion | 0 | AD | Clear | | Deafness and Vestibular Dysfunction (DINGS1),
(Discovered in Doberman Pinscher) | PTPRQ | Insertion | 0 | AR | Clear | | Deafness and Vestibular Dysfunction (DINGS2),
(Discovered in Doberman Pinscher) | MYO7A | G>A | 0 | AR | Clear | | Degenerative Myelopathy | SOD1 | G>A | 0 | AR | Clear | | Demyelinating Neuropathy | SBF2 | G>T | 0 | AR | Clear | | Dental Hypomineralization | FAM20C | C>T | 0 | AR | Clear | | Dental-Skeletal-Retinal Anomaly (Discovered in the Cane Corso) | MIA3 | Deletion | 0 | AR | Clear | | Dilated Cardiomyopathy (Discovered in the Schnauzer) | RBM20 | Deletion | 0 | AR | Clear | | Disproportionate Dwarfism (Discovered in the Dogo
Argentino) | PRKG2 | C>A | 0 | AR | Clear | | Dominant Progressive Retinal Atrophy | RHO | C>G | 0 | AD | Clear | | Dystrophic Epidermolysis Bullosa (Discovered in the Basset Hound) | COL7A1 | Insertion | 0 | AR | Clear | | Dystrophic Epidermolysis Bullosa (Discovered in the Central Asian Ovcharka) | COL7A1 | C>T | 0 | AR | Clear | | Dystrophic Epidermolysis Bullosa (Discovered in the Golden Retriever) | COL7A1 | C>T | 0 | AR | Clear | | Early Adult Onset Deafness For Border Collies only (Linkage test) | Intergenic | Insertion | 0 | AR | Clear | | Early Retinal Degeneration (Discovered in the Norwegian Elkhound) | STK38L | Insertion | 0 | AR | Clear | | Early-Onset Adult Deafness (Discovered in the Rhodesian Ridgeback) | EPS8L2 | Deletion | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|--------|--------------|--------|-------------|--------| | Early-Onset Progressive Polyneuropathy (Discovered in the Alaskan Malamute) | NDRG1 | G>T | 0 | AR | Clear | | Early-Onset Progressive Polyneuropathy (Discovered in the Greyhound) | NDRG1 | Deletion | 0 | AR | Clear | | Early-Onset Progressive Retinal Atrophy (Discovered in the Portuguese Water Dog) | CCDC66 | Insertion | 0 | AR | Clear | | Early-Onset Progressive Retinal Atrophy, (Discovered in the Spanish Water Dog) | PDE6B | Deletion | 0 | AR | Clear | | Ehlers-Danlos Syndrome (Discovered in mixed breed) | COL5A1 | G>A | 0 | AD | Clear | | Ehlers-Danlos Syndrome (Discovered in the Labrador Retriever) | COL5A1 | Deletion | 0 | AD | Clear | | Epidermolytic Hyperkeratosis | KRT10 | G>T | 0 | AR | Clear | | Episodic Falling Syndrome | BCAN | Insertion | Ο | AR | Clear | | Exercise-Induced Collapse | DNM1 | G>T | 0 | AR | Clear | | Factor VII Deficiency | F7 | G>A | 0 | AR | Clear | | Factor XI Deficiency | FXI | Insertion | 0 | AD | Clear | | Familial Nephropathy (Discovered in the English Cocker Spaniel) | COL4A4 | A>T | 0 | AR | Clear | | Familial Nephropathy (Discovered in the English Springer Spaniel) | COL4A4 | C>T | 0 | AR | Clear | | Fanconi Syndrome | FAN1 | Deletion | 0 | AR | Clear | | Fetal Onset Neuroaxonal Dystrophy | MFN2 | G>C | 0 | AR | Clear | | Focal Non-Epidermolytic Palmoplantar Keratoderma | KRT16 | G>C | 0 | AR | Clear | | Generalized Progressive Retinal Atrophy (Discovered in the Schapendoes) | CCDC66 | Insertion | 0 | AR | Clear | | Glanzmann Thrombasthenia Type I (Discovered in Great Pyrenees) | ITGA2B | C>G | 0 | AR | Clear | | Glanzmann Thrombasthenia Type I (Discovered in mixed breed dogs) | ITGA2B | C>T | 0 | AR | Clear | | | | | | | | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|--------------|--------------|--------|-------------|--------| | Globoid Cell Leukodystrophy (Discovered in Terriers) | GALC | A>C | 0 | AR | Clear | | Globoid Cell Leukodystrophy (Discovered in the Irish Setter) | GALC | A>T | 0 | AR | Clear | | Glycogen Storage Disease Type Ia (Discovered in the German Pinscher) | G6PC | Insertion | 0 | AR | Clear | | Glycogen Storage Disease Type Ia (Discovered in the Maltese) | G6PC | G>C | 0 | AR | Clear | | Glycogen Storage Disease Type IIIa, (GSD IIIa) | AGL | Deletion | 0 | AR | Clear | | GM1 Gangliosidosis (Discovered in the Portuguese Water Dog) | GLB1 | G>A | 0 | AR | Clear | | GM1 Gangliosidosis (Discovered in the Shiba) | GLB1 | Deletion | 0 | AR | Clear | | GM2 Gangliosidosis (Discovered in the Japanese Chin) | HEXA | G>A | 0 | AR | Clear | | GM2 Gangliosidosis (Discovered in the Toy Poodle) | HEXB | Deletion | 0 | AR | Clear | | Hemophilia A (Discovered in Old English Sheepdog) | FVIII | C>T | 0 | XR | Clear | | Hemophilia A (Discovered in the Boxer) | FVIII | C>G | 0 | XR | Clear | | Hemophilia A (Discovered in the German Shepherd Dog -
Variant 1) | FVIII | G>A | 0 | XR | Clear | | Hemophilia A (Discovered in the German Shepherd Dog -
Variant 2) | FVIII | G>A | 0 | XR | Clear | | Hemophilia A (Discovered in the Havanese) | FVIII | Insertion | 0 | XR | Clear | | Hemophilia A (Discovered in the Labrador Retriever) | Confidential | - | 0 | XR | Clear | | Hemophilia B | FIX | G>A | 0 | XR | Clear | | Hemophilia B (Discovered in the Airedale Terrier) | FIX | Insertion | 0 | XR | Clear | | Hemophilia B (Discovered in the Lhasa Apso) | FIX | Deletion | 0 | XR | Clear | | Hereditary Ataxia (Discovered in the Belgian Malinois) | SLC12A6 | Insertion | 0 | AR | Clear | | Hereditary Ataxia (Discovered in the Norwegian Buhund) | KCNIP4 | T>C | 0 | AR | Clear | | | | | | | | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|--------------|--------------|--------|-------------|--------| | Hereditary Calcium Oxalate Urolithiasis, Type 1 | Confidential | - | 0 | AR | Clear | | Hereditary Elliptocytosis | SPTB | C>T | 0 | AD | Clear | | Hereditary Footpad Hyperkeratosis | FAM83G | G>C | 0 | AR | Clear | | Hereditary Nasal Parakeratosis (Discovered in the Greyhound) | SUV39H2 | Deletion | 0 | AR | Clear | | Hereditary Nasal Parakeratosis (Discovered in the Labrador Retriever) | SUV39H2 | A>C | 0 | AR | Clear | | Hereditary Vitamin D-Resistant Rickets Type II | VDR | Deletion | 0 | AR | Clear | | Hyperuricosuria | SLC2A9 | G>T | 0 | AR | Clear | | Hypocatalasia | CAT | G>A | 0 | AR | Clear | | Hypomyelination | FNIP2 | Deletion | 0 | AR | Clear | | Hypophosphatasia | Confidential | - | 0 | AR | Clear | | Ichthyosis (Discovered in the American Bulldog) | NIPAL4 | Deletion | 0 | AR | Clear | | Ichthyosis (Discovered in the Great Dane) | SLC27A4 | G>A | 0 | AR | Clear | | Ichthyosis Type 2 (Discovered in the Golden Retriever) | ABHD5 | Deletion | 0 | AR | Clear | | Inflammatory Myopathy (Discovered in the Dutch
Shepherd Dog) | SLC25A12 | A>G | 0 | AR | Clear | | Inflammatory Pulmonary Disease (Discovered in the Rough Collie) | AKNA | Deletion | 0 | AR | Clear | | Intestinal Cobalamin Malabsorption (Discovered in the Beagle) | CUBN | Deletion | 0 | AR | Clear | | Intestinal Cobalamin Malabsorption (Discovered in the Border Collie) | CUBN | Deletion | 0 | AR | Clear | | Intestinal Cobalamin Malabsorption (Discovered in the Komondor) | CUBN | G>A | 0 | AR | Clear | | Intestinal Lipid Malabsorption (Discovered in the Australian Kelpie) | ACSL5 | Deletion | О | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |--|--------------|--------------|--------|-------------|--------| | Junctional Epidermolysis Bullosa (Discovered in the Australian Cattle Dog Mix) | LAMA3 | T>A | 0 | AR | Clear | | Junctional Epidermolysis Bullosa (Discovered in the Australian Shepherd) | LAMB3 | A>G | 0 | AR | Clear | | Juvenile Cataract (Discovered in the Wirehaired Pointing Griffon) | FYCO1 | Deletion | 0 | AR | Clear | | Juvenile Dilated Cardiomyopathy (Discovered in the Toy
Manchester Terrier) | ABCC9 | G>A | 0 | AR | Clear | | Juvenile Encephalopathy (Discovered in the Parson Russell Terrier) | Confidential | - | 0 | AR | Clear | | Juvenile Laryngeal Paralysis and Polyneuropathy | RAB3GAP1 | Deletion | 0 | AR | Clear | | Juvenile Myoclonic Epilepsy | DIRAS1 | Deletion | O | AR | Clear | | L-2-Hydroxyglutaric aciduria (Discovered in the Staffordshire Bull Terrier) | L2HGDH | T>C | 0 | AR | Clear | | L-2-Hydroxyglutaric Aciduria (Discovered in the West Highland White Terrier) | Confidential | - | 0 | AR | Clear | | Lafora Disease (Linkage test) | NHLRC1 | Insertion | 0 | AR | Clear | | Lagotto Storage Disease | ATG4D | G>A | 0 | AR | Clear | | Lamellar Ichthyosis | TGM1 | Insertion | 0 | AR | Clear | | Laryngeal Paralysis (Discovered in the Bull Terrier and Miniature Bull Terrier) | RAPGEF6 | Insertion | 0 | AR | Clear | | Leigh-like Subacute Necrotizing Encephalopathy (Discovered in the Yorkshire Terrier) | SLC19A3 | Insertion | 0 | AR | Clear | | Lethal Acrodermatitis (Discovered in the Bull Terrier) | MKLN1 | A>C | 0 | AR | Clear | | Leukodystrophy (Discovered in the Standard Schnauzer) | TSEN54 | C>T | 0 | AR | Clear | | Ligneous Membranitis | PLG | T>A | 0 | AR | Clear | | Limb-girdle Muscular Dystrophy (Discovered in the Boston Terrier) | SGCD | Deletion | 0 | AR | Clear | Wisdom Panel™ Genetics Report page 17 of 25 Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|------------|--------------|--------|-------------|--------| | Limb-girdle Muscular Dystrophy, Type L3 (Discovered in the Miniature Dachshund) | SGCA | G>A | 0 | AR | Clear | | Lung Developmental Disease (Discovered in the Airedale Terrier) | LAMP3 | C>T | 0 | AR | Clear | | Macrothrombocytopenia (Discovered in Norfolk and Cairn Terrier) | TUBB1 | G>A | 0 | AR | Clear | | May-Hegglin Anomaly | MYH9 | G>A | 0 | AD | Clear | | MDR1 Medication Sensitivity | MDR1/ABCB1 | Deletion | 0 | AD | Clear | | Microphthalmia (Discovered in the Soft-Coated Wheaten Terrier) | RBP4 | Deletion | 0 | AR | Clear | | Mucopolysaccharidosis Type IIIA (Discovered in the Dachshund) | SGSH | C>A | 0 | AR | Clear | | Mucopolysaccharidosis Type IIIA (Discovered in the New Zealand Huntaway) | SGSH | Insertion | 0 | AR | Clear | | Mucopolysaccharidosis Type VII (Discovered in the Brazilian Terrier) | GUSB | C>T | 0 | AR | Clear | | Mucopolysaccharidosis Type VII (Discovered in the German Shepherd Dog) | GUSB | G>A | 0 | AR | Clear | | Mucopolysaccharidosis VI (Discovered in the Miniature Pinscher) | ARSB | G>A | 0 | AR | Clear | | Muscular Dystrophy (Discovered in the Cavalier King Charles Spaniel) | Dystrophin | G>T | 0 | XR | Clear | | Muscular Dystrophy (Discovered in the Golden Retriever) | Dystrophin | A>G | 0 | XR | Clear | | Muscular Dystrophy (Discovered in the Landseer) | COL6A1 | G>T | 0 | AR | Clear | | Muscular Dystrophy (Discovered in the Norfolk Terrier) | Dystrophin | Deletion | 0 | XR | Clear | | Muscular Dystrophy-Dystroglycanopathy (Discovered in the Labrador Retriever) | LARGE | C>T | 0 | AR | Clear | | Musladin-Lueke Syndrome | ADAMTSL2 | C>T | 0 | AR | Clear | | Myeloperoxidase Deficiency | MOP | C>T | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|---------|--------------|--------|-------------|--------| | Myotonia Congenita (Discovered in Australian Cattle Dog) | CLCN1 | Insertion | 0 | AR | Clear | | Myotonia Congenita (Discovered in the Labrador Retriever) | CLCN1 | T>A | 0 | AR | Clear | | Myotonia Congenita (Discovered in the Miniature Schnauzer) | CLCN1 | C>T | 0 | AR | Clear | | Myotubular Myopathy | MTM1 | A>C | 0 | XR | Clear | | Narcolepsy (Discovered in the Dachshund) | HCRTR2 | G>A | 0 | AR | Clear | | Narcolepsy (Discovered in the Labrador Retriever) | HCRTR2 | G>A | 0 | AR | Clear | | Nemaline Myopathy | NEB | C>A | 0 | AR | Clear | | Neonatal Cerebellar Cortical Degeneration | SPTBN2 | Deletion | 0 | AR | Clear | | Neonatal Encephalopathy with Seizures | ATF2 | T>G | 0 | AR | Clear | | Neuroaxonal Dystrophy (Discovered in Spanish Water
Dog) | TECPR2 | C>T | 0 | AR | Clear | | Neuroaxonal Dystrophy (Discovered in the Papillon) | PLA2G6 | G>A | 0 | AR | Clear | | Neuroaxonal Dystrophy (Discovered in the Rottweiler) | VPS11 | A>G | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 1 | PPT1 | Insertion | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 12 (Discovered in the Australian Cattle Dog) | ATP13A2 | C>T | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 5 (Discovered in the Border Collie) | CLN5 | C>T | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 5 (Discovered in the Golden Retriever) | CLN5 | Deletion | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 7 | MFSD8 | Deletion | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Alpine Dachsbracke) | CLN8 | Deletion | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Australian Shepherd) | CLN8 | G>A | 0 | AR | Clear | | | | | | | | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|----------|--------------|--------|-------------|--------| | Neuronal Ceroid Lipofuscinosis 8 (Discovered in the English Setter) | CLN8 | T>C | 0 | AR | Clear | | Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Saluki) | CLN8 | Insertion | 0 | AR | Clear | | Obesity risk (POMC) | POMC | Deletion | 0 | AD | Clear | | Osteochondrodysplasia | SLC13A1 | Deletion | 0 | AR | Clear | | Osteochondromatosis (Discovered in the American Staffordshire Terrier) | EXT2 | C>A | 0 | AR | Clear | | Osteogenesis Imperfecta (Discovered in the Beagle) | COL1A2 | C>T | 0 | AD | Clear | | Osteogenesis Imperfecta (Discovered in the Dachshund) | SERPINH1 | T>C | 0 | AR | Clear | | P2RY12-associated Bleeding Disorder | P2RY12 | Deletion | 0 | AR | Clear | | Palmoplantar Hyperkeratosis (Discovered in the Rottweiler) | DSG1 | Deletion | 0 | AR | Clear | | Paroxysmal Dyskinesia | PIGN | C>T | 0 | AR | Clear | | Persistent Müllerian Duct Syndrome | AMHR2 | C>T | 0 | AR | Clear | | Pituitary Dwarfism (Discovered in the Karelian Bear Dog) | POU1F1 | C>A | 0 | AR | Clear | | Polycystic Kidney Disease | PKD1 | G>A | 0 | AD | Clear | | Prekallikrein Deficiency | KLKB1 | T>A | 0 | AR | Clear | | Primary Ciliary Dyskinesia | CCDC39 | C>T | 0 | AR | Clear | | Primary Ciliary Dyskinesia (Discovered in the Alaskan
Malamute) | NME5 | Deletion | 0 | AR | Clear | | Primary Lens Luxation | ADAMTS17 | G>A | 0 | AR | Clear | | Primary Open Angle Glaucoma (Discovered in Basset Fauve de Bretagne) | ADAMTS17 | G>A | 0 | AR | Clear | | Primary Open Angle Glaucoma (Discovered in Petit
Basset Griffon Vendeen) | ADAMTS17 | Insertion | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|--------------|--------------|--------|-------------|--------| | Primary Open Angle Glaucoma and Lens Luxation
(Discovered in Chinese Shar-Pei) | ADAMTS17 | Deletion | 0 | AR | Clear | | Progressive Early-Onset Cerebellar Ataxia | SEL1L | T>C | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Basenji) | SAG | T>C | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Golden Retriever - GR-PRA 2 variant) | TTC8 | Deletion | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Golden Retriever - GR-PRA1 variant) | SLC4A3 | Insertion | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Lapponian Herder) | IFT122 | C>T | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Lhasa
Apso) | IMPG2 | Insertion | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Miniature Long Haired Dachshund) | RPGRIP1 | Insertion | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Papillon and Phalène) | CNGB1 | Deletion | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Shetland Sheepdog - BBS2 variant) | Confidential | - | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Shetland Sheepdog - CNGA1 variant) | CNGA1 | Deletion | 0 | AR | Clear | | Progressive Retinal Atrophy (Discovered in the Swedish Vallhund) | MERTK | Insertion | 0 | AR | Clear | | Progressive Retinal Atrophy 1 (Discovered in the Italian Greyhound) | Confidential | - | 0 | AR | Clear | | Progressive Retinal Atrophy Type III | FAM161A | Insertion | О | AR | Clear | | Progressive Rod Cone Degeneration (prcd-PRA) | PRCD | G>A | 0 | AR | Clear | | Protein Losing Nephropathy | NPHS1 | G>A | 0 | AR | Clear | | Pyruvate Dehydrogenase Phosphatase 1 Deficiency | PDP1 | C>T | 0 | AR | Clear | | Pyruvate Kinase Deficiency (Discovered in the Basenji) | PKLR | Deletion | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|--------------|--------------|--------|-------------|--------| | Pyruvate Kinase Deficiency (Discovered in the Beagle) | PKLR | G>A | 0 | AR | Clear | | Pyruvate Kinase Deficiency (Discovered in the Pug) | PKLR | T>C | 0 | AR | Clear | | Pyruvate Kinase Deficiency (Discovered in the West Highland White Terrier) | PKLR | Insertion | 0 | AR | Clear | | QT Syndrome | KCNQ1 | C>A | 0 | AD | Clear | | Renal Cystadenocarcinoma and Nodular
Dermatofibrosis | FLCN | A>G | 0 | AD | Clear | | Rod-Cone Dysplasia 1 | PDE6B | G>A | 0 | AR | Clear | | Rod-Cone Dysplasia 1a | PDE6B | Insertion | 0 | AR | Clear | | Rod-Cone Dysplasia 3 | PDE6A | Deletion | 0 | AR | Clear | | Sensorineural Deafness (Discovered in the Rottweiler) | LOXHD1 | G>C | 0 | AR | Clear | | Sensory Ataxic Neuropathy | tRNATyr | Deletion | 0 | МТ | Clear | | Sensory Neuropathy | FAM134B | Insertion | 0 | AR | Clear | | Severe Combined Immunodeficiency (Discovered in Frisian Water Dogs) | RAG1 | G>T | 0 | AR | Clear | | Severe Combined Immunodeficiency (Discovered in Russell Terriers) | PRKDC | G>T | 0 | AR | Clear | | Shaking Puppy Syndrome (Discovered in the Border Terrier) | Confidential | - | 0 | AR | Clear | | Skeletal Dysplasia 2 | COL11A2 | G>C | 0 | AR | Clear | | Spinocerebellar Ataxia (Late-Onset Ataxia) | CAPN1 | G>A | 0 | AR | Clear | | Spinocerebellar Ataxia with Myokymia and/or Seizures | KCNJ10 | C>G | 0 | AR | Clear | | Spondylocostal Dysostosis | HES7 | Deletion | 0 | AR | Clear | | Spongy Degeneration with Cerebellar Ataxia (Discovered in Belgian Malinois - SDCA1) | KCNJ10 | T>C | 0 | AR | Clear | | Spongy Degeneration with Cerebellar Ataxia (Discovered in Belgian Malinois - SDCA2) | ATP1B2 | Insertion | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ## Other health conditions tested | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|--------------|--------------|--------|-------------|--------| | Stargardt Disease (Discovered in the Labrador Retriever) | ABCA4 | Insertion | 0 | AR | Clear | | Startle Disease (Discovered in Irish Wolfhounds) | SLC6A5 | G>T | 0 | AR | Clear | | Startle Disease (Discovered in the Miniature American Shepherd) | Confidential | - | 0 | AR | Clear | | Succinic Semialdehyde Dehydrogenase Deficiency (Discovered in the Saluki) | ALDH5A1 | G>A | 0 | AR | Clear | | Thrombopathia (Discovered in the Basset Hound) | RASGRP1 | Deletion | 0 | AR | Clear | | Thrombopathia (Discovered in the Eskimo Spitz) | RASGRP1 | Insertion | 0 | AR | Clear | | Trapped Neutrophil Syndrome | VPS13B | Deletion | 0 | AR | Clear | | Van den Ende-Gupta Syndrome | SCARF2 | Deletion | 0 | AR | Clear | | von Willebrand's Disease, type 1 | VWF | G>A | 0 | AD | Clear | | von Willebrand's Disease, type 2 | VWF | T>G | 0 | AR | Clear | | von Willebrand's Disease, type 3 (Discovered in the Kooiker Hound) | VWF | G>A | 0 | AR | Clear | | von Willebrand's Disease, type 3 (Discovered in the Scottish Terrier) | VWF | Deletion | 0 | AR | Clear | | von Willebrand's Disease, type 3 (Discovered in the Shetland Sheepdog) | VWF | Deletion | 0 | AR | Clear | | X-Linked Ectodermal Dysplasia | EDA | G>A | 0 | XR | Clear | | X-Linked Hereditary Nephropathy (Discovered in the Navasota Dog) | COL4A5 | Deletion | 0 | XR | Clear | | X-Linked Hereditary Nephropathy (Discovered in the Samoyed) | COL4A5 | G>T | 0 | XR | Clear | | X-Linked Myotubular Myopathy | MTM1 | C>A | 0 | XR | Clear | | X-Linked Progressive Retinal Atrophy 1 | RPGR | Deletion | 0 | XR | Clear | | X-Linked Progressive Retinal Atrophy 2 | RPGR | Deletion | 0 | XR | Clear | | | | | | | | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ page 24 of 25 | Genetic Condition | Gene | Risk Variant | Copies | Inheritance | Result | |---|--------------|--------------|--------|-------------|--------| | X-Linked Severe Combined Immunodeficiency
(Discovered in the Basset Hound) | IL2RG | Deletion | 0 | XR | Clear | | X-Linked Severe Combined Immunodeficiency
(Discovered in the Cardigan Welsh Corgi) | IL2RG | Insertion | 0 | XR | Clear | | X-Linked Tremors | PLP1 | A>C | 0 | XR | Clear | | Xanthinuria (Discovered in a mixed breed dog) | Confidential | - | 0 | AR | Clear | | Xanthinuria (Discovered in the Cavalier King Charles Spaniel) | Confidential | - | 0 | AR | Clear | | Xanthinuria (Discovered in the Toy Manchester Terrier) | Confidential | - | 0 | AR | Clear | Breed: Whippet Microchip number: 250269610076431 Birth date: 2023-04-28 Registration number: 56258 Test date: 2025-01-10 ID kit: DTVDYCZ ### Glossary of genetic terms #### Test result definitions At Risk: Based on the disorder's mode of inheritance, the dog inherited a number of genetic variant(s) which increases the dog's risk of being diagnosed with the associated disorder. Carrier: The dog inherited one copy of a genetic variant when two copies are usually necessary to increase the dog's risk of being diagnosed with the associated disorder. While carriers are usually not at risk of clinical expression of the disorder, carriers of some complex variants may be associated with a low risk of developing the disorder. Clear: The dog did not inherit the genetic variant(s) associated with the disorder and will not be at elevated risk of being diagnosed with the disorder due to this genotype. However, similar clinical signs could develop from different genetic or clinical causes. **Inconclusive:** An inconclusive result indicates a confident call could not be made based on the data for that genetic variant. Health testing is performed in replicates, and on occasion the outcomes do not agree. This may occur due to an unusual sequence of DNA in the region tested, multiple cell genotypes present due to chimerism or acquired mutations, or due to quality of the DNA sample. #### Inheritance mode definitions **Autosomal Recessive (AR):** For autosomal recessive disorders, dogs with two copies of the genetic variant are at risk of developing the associated disorder. Dogs with one copy of the variant are considered carriers and are usually not at risk of developing the disorder. However, carriers of some complex variants grouped in this category may be associated with a low risk of developing the disorder. Dogs with one or two copies may pass the disorder-associated variant to their puppies if bred. **Autosomal Dominant (AD):** For autosomal dominant disorders, dogs with one or two copies of the genetic variant are at risk of developing the associated disorder. Inheriting two copies of the variant may increase the risk of development of the disorder or cause the condition to be more severe. These dogs may pass the disorder-associated variant to their puppies if bred. X-linked Recessive (XR): For X-linked recessive disorders, the genetic variant is found on the X chromosome. Female dogs must inherit two copies of the variant to be at risk of developing the condition, whereas male dogs only need one copy to be at risk. Males and females with any copies of the variant may pass the disorder-associated variant to their puppies if bred. X-linked Dominant (XD): For X-linked dominant disorders, the genetic variant is found on the X chromosome. Both male and female dogs with one copy of the variant are at risk of developing the disorder. Females inheriting two copies of the variant may be at higher risk or show a more severe form of the disorder than with one copy. Males and females with any copies of the variant may pass the disorder-associated variant to their puppies if bred. Mitochondrial (MT): Unlike the two copies of genomic DNA held in the nucleus, there are thousands of mitochondria in each cell of the body, and each holds its own mitochondrial DNA (mtDNA). Mitochondria are called the "powerhouses" of the cell. For a dog to be at risk for a mitochondrial disorder, it must inherit a certain ratio of mtDNA with the associated variant compared to normal mtDNA. mtDNA is inherited only from the mother.